Appendix D

TRAFFIC IMPACT Study

Traffic Impact Study

Bear River Casino Expansion in Humboldt County

Prepared for:

Analytical Environmental Services
I801 7th Street, Suite 100
Sacramento, CA 95814
Attn: Jennifer Bowden
Prepared by:
Abrams Associates
1660 Olympic Boulevard, Suite 210
Walnut Creek, CA 94596

Traffic Impact Study
 for the
 Bear River Casino
 In Humboldt County

Prepared by
Abrams Associates
August, 2009

SECTION 1.0

INTRODUCTION

1.1 PURPOSE AND NEED

The proposed project would be located about a mile southeast of the City of Loleta, in Humboldt County. The proposed project (hereafter referred to as the "Proposed Action") would include an expansion of the existing Bear River Casino that would include a new restaurant, a ballroom/meeting room, and some additional casino-related areas for a net total of 7,300 square feet of new building space. The Proposed Action would also include the construction of a fourstory hotel with 105 rooms that would be attached to the casino building.

The purpose of this study is to evaluate the potential transportation impacts of the Proposed Action and to recommend any traffic mitigation measures that may be required. This traffic study also includes a review of the access design, the driveways, and the internal traffic system proposed. This traffic study and the trip generation assumptions were prepared based on guidelines set forth by Humboldt County and the California Department of Transportation's (Caltrans) Guide to the Preparation of Traffic Impact Studies ${ }^{1}$. The location of the existing Bear River Casino and the project study area is shown in Figure 1.

1.2 STUDY INTERSECTIONS

For this analysis five (5) study intersections were selected for analysis in this report, based on their proximity to the site, Caltrans guidelines, and their potential to be impacted by the Proposed Action. The location of the project study intersections is shown in Figure 1. For this project, all of the project study intersections are controlled by stop signs on the minor approaches.

1. Loleta Drive at the Southbound U.S. 101 Ramps
2. Loleta Drive at the Northbound U.S. 101 Ramps
3. Singley Hill Road/Fernbridge Drive at the Southbound U.S. 101 Ramps
4. Singley Hill Road at the Northbound U.S. 101 Ramps
5. Singley Hill Road at Fearrien Street (Project Entrance) and Bear River Drive

All intersections have been analyzed for the AM peak hour (7:30 - 8:30 AM), and the PM commute peak hour (5:00-6:00 PM). Intersection turning movement data was obtained from the

[^0]

Rohnerville Rancheria Transportation/Circulation Study and the Fearrrien Property Traffic Impact Study and calibrated with new counts taken in June of 2009. It should be noted that the new counts indicate the traffic volumes in the area have increased by approximately 20% over the past three years.

1.3 PROJECT DESCRIPTION

The Proposed Action is planned to include two components that would generate traffic: 1) The construction of an additional 7,300 square feet of casino-related building space and the restaurant (a total of 12,000 square feet) and, 2) The construction of the four-story hotel with 105 rooms (attached to the casino building). The proposed project site plan is shown on Figure 2.

1.4 TRAFFIC ANALYSIS SCENARIOS

Five study scenarios have been addressed as part of this traffic analysis. These are listed below:

1) Existing Conditions - This scenario evaluates the level-of-service at the studied intersections for the existing conditions based on traffic counts taken in June of 2009.
2) Baseline Conditions - This scenario evaluates the level-of-service at the studied intersections for the existing conditions with the addition of traffic from reasonably foreseeable projects in the area. This includes the planned residential project on the adjacent Fearrien Property.
3) Baseline Plus Project Conditions - This scenario includes analyses of the effects of traffic from the Proposed Action on the Baseline traffic operations.
4) $\mathbf{2 0 3 0}$ Cumulative Conditions - This scenario includes the analysis of build-out conditions in the area, projected for the Year 2030, plus other development as defined in the Humboldt County General Plan.
5) Cumulative Plus Project Conditions - this scenario includes the Cumulative Year 2030 traffic volumes with the addition of the traffic from the Proposed Action.

SECTION 2.0

EXECUTIVE SUMMARY

2.1 SITE ACCESS

The proposed site plan is expected to function well and not cause any safety or operational problems. The main issue to be addressed regarding site access involves the improvements that will be required at the intersection of Singley Hill Road with the main entrance to the project. Beyond this intersection (Singley Hill Road at Bear River Drive) it has been suggested that Singley Hill Road north of the casino be restricted to local traffic only to minimize the amount of traffic passing by existing residences in that area. To address this issue there is a sign indicating that no right-turns are allowed. However, additional improvement maybe needed to clearly indicate that traffic exiting from the Bear River Casino must turn left onto Singley Hill Road. Based on our review of the roadways in the area closing this roadway would not be required from a traffic safety or operations standpoint and from a local traffic planning standpoint this roadway should clearly remain open to the public. Since this area has no other roadways or parallel routes on this side of the freeway it is our understanding that various public agencies may ultimately oppose the closing of this road to the public.

It is recommended that this road remain open to the public and improvements such as medians should be constructed in the vicinity of the intersection to direct traffic towards the freeway. The medians would effectively discourage casino patrons from turning right when leaving the casino. This should help minimize the amount of casino traffic traveling past the other residences without actually closing this important part of the local roadway network to the public. Because the volume of traffic that travels beyond the casino on Singley Hill Road is so low there would be no safety or operational problems expected with various non-standard configurations. However, depending on the final design the County may need to consider having a stop sign placed on the southbound Singley Hill Road approach to this intersection to indicate that vehicles have the right-of-way when coming up the hill.

2.2 INTERSECTION AND ROADWAY CAPACITY IMPACTS

Under both existing and cumulative traffic conditions, the addition of traffic from the Proposed Action is not forecast to degrade any intersection beyond LOS B. All intersections would operate within the County's LOS standards (LOS C) and no off-site traffic mitigations would be required.

2.3 FREEWAY IMPACTS

Based on our analysis there would not be any freeway improvements required by the project on the mainline or at any of the ramp intersections that were studied.

SECTION 3.0

AFFECTED ENVIRONMENT

3.1 RESOURCE USE PATTERNS

Transportation Networks

Roadway System

Figure 1 illustrates the roadways in the vicinity of the project site. A brief description of the key roadway facilities in the area is provided below.

U.S. 101

Within the State of California U.S. 101 is a north-south freeway that extends north from Los Angeles along the coast all the way to the Oregon State Line. Within Humboldt County the highway alternates between a 2-lane undivided highway and a four-lane divided highway. Within the project study area the highway is a four-lane divided facility with full interchanges/grade separations at all major cross roads. The average daily traffic (ADT) on U.S. 101 in the vicinity of the project is approximately 23,000 vehicles and the peak hour traffic volume is about 2,200 vehicles.

Singley Hill Road

Singley Hill Road is a north-south rural 2-lane roadway that runs along the western edge of the Rohnerville Rancheria and provides access to the Bear River Casino. This roadway has been improved to a 24 -foot cross-section with shoulders between the freeway and the casino. Beyond that the roadway width is approximately 20 feet and has little or no shoulders in most areas.

Fernbridge Drive

Fernbridge Drive is a two-lane road, which runs in a north south direction along the eastern edge of U.S. 101. The primary vehicular access to and from the project site is proposed to be via the U.S. 101 interchange with Fernbridge Drive and Singly Hill Road. To the south, Fernbridge Dr. provides a connection to State Highway 1 and the communities of Fernbridge and Worswick.

Existing Intersection Traffic Volumes

Figure 3 displays the existing a.m. and p.m. peak-hour turning movements at each study intersection. Figure 4 displays the existing lane configurations and traffic control devices at each of the project study intersections.

Existing Intersection Levels of Service

Level of service is a qualitative measure reflecting the traffic operation of the intersection. As with signalized intersections, there are six levels of service for unsignalized intersections, A through F, which represent conditions from best to worst, respectively. Table 1 shows the corresponding average total delay per vehicle at unsignalized intersections for each LOS category from A to F.

TABLE 1
LEVEL-OF-SERVICE FOR UNSIGNALIZED INTERSECTIONS

Level of Service (LOS)	Ave Total Delay (sec/veh)	Traffic Condition
A	<10	No Delay
B	$>10-15$	Short Delay
C	$>15-25$	Moderate Delay
D	$>25-35$	Long Delay
E	$>35-50$	Very Long Delay
F	>50	Volume $>$ Capacity

Table 2 summarizes the existing a.m. and p.m. peak-hour levels of service at each study intersection. As seen in this table all five study intersections currently operate at LOS B or better during both the a.m. and p.m. peak hours. LOS C is considered the minimum acceptable level of service set forth by Humboldt County. Thus each intersection operates acceptably according to the County's level of service standards.

TABLE 2
PEAK-HOUR INTERSECTION LEVEL OF SERVICE SUMMARY EXISTING CONDITIONS

Intersection	Traffic Control	AM Peak Hour		PM Peak Hour	
		Average Delay ${ }^{1}$	Level of Service	Average Delay	Level of Service
1) U.S. 101 Northbound Ramps at Loleta Drive	Stop Sign	9.4 sec	A	9.8 sec	A
2) U.S. 101 Southbound Ramps at Loleta Drive	Stop Sign	10.2 sec	B	10.5 sec	B
3) U.S. 101 Southbound Off-Ramp at Fernbridge Drive	Stop Sign	10.3 sec	B	10.2 sec	B
4) U.S. 101 Northbound Ramps at Singley Hill Road/Fernbridge Drive	Stop Sign	9.5 sec	A	10.1 sec	B
5) Singley Hill Road at Bear River Drive and the Project Entrance	Stop Sign	11.4 sec	B	12.0 sec	B

Intersection Signalization Needs

Traffic signals are used to provide for an orderly flow of traffic through an intersection. Many times they are needed to provide side street traffic and opportunity to access a major road where high volumes and/or high vehicle speeds block crossing or turn movements. They do not, however, necessarily increase the capacity of an intersection (i.e., increase the intersection's ability to accommodate additional vehicles) and, in fact, often slightly reduce the number of total vehicles that can pass through an intersection in a given period of time. Signals can also cause an increase in traffic accidents if installed at improper locations.

There are eleven possible tests (called "warrants") set forth in the Caltrans Traffic Manual for determining whether a traffic signal should be considered for installation. These tests consider criteria such as traffic volumes and delay, pedestrian volumes, presence of school children, and accident history. Usually, two or more warrants must be met before a signal is installed. If the Peak Hour Volume Warrant (Warrant \#11) is met at an intersection that is a strong indication that a more detailed signal warrant analysis covering all possible warrants is appropriate. The requirements for a detailed signal warrant analysis are set forth in Chapter 9 of the California Manual of Uniform Traffic Control Devices (CA MUTCD).

For this analysis observations of peak hour traffic conditions and a test for peak hour volumes was conducted at all unsignalized project study intersections. Our analysis of the existing intersection turning movements found that that none of the locations currently meets the peak hour signal warrants for rural areas. In summary, our review indicated that none of the project study intersections would meet Caltrans warrants for installation of a traffic signal under existing conditions.

Existing Bicycle and Pedestrian System

Singley Hill Road provides no sidewalks to accommodate pedestrian activity. Further, no bike lanes are provided along this road, which has relatively low traffic volumes. Field observations were performed to determine the general level of bicycle and pedestrian activity along Singley Hill Road. The observations indicated that the current level of pedestrian activity is minimal. Bicycle activity is similarly low.

Transit Service

The Humboldt Transit Authority (HTA), which is operated by Humboldt County, provides bus transit service to residents throughout the County and provides connections to regional destinations via Greyhound Bus Lines. In the vicinity of the Proposed Action the nearest bus stop on the HTA's Redwood Transit System is located south of the project site in Fernbridge with additional stops located in the nearby town of Loleta.

Baseline Intersection Levels of Service

Traffic generated by the planned Fearrien Property residential project was added to the existing a.m. and p.m. peak-hour volumes along with a 15% percent increase in the existing casino traffic volumes. Table 3 summarizes the a.m. and p.m. peak-hour level of service at each study intersection under the baseline conditions. As seen in this table all project intersections are projected to continue to operate at LOS C or better.

TABLE 3
BASELINE PEAK HOUR INTERSECTION LEVEL OF SERVICE SUMMARY

Intersection	Traffic Control	AM Peak Hour		PM Peak Hour	
		Average Delay ${ }^{\text {a }}$	Level of Service	Average Delay	Level of Service
1) U.S. 101 Northbound Ramps at Loleta Drive	Stop Sign	9.4 sec	A	9.9 sec	A
2) U.S. 101 Southbound Ramps at Loleta Drive	Stop Sign	10.2 sec	B	10.6 sec	B
3) U.S. 101 Southbound Off-Ramp at Fernbridge Drive	Stop Sign	10.4 sec	B	10.4 sec	B
4) U.S. 101 Northbound Ramps at Singley Hill Road/Fernbridge Drive	Stop Sign	9.6 sec	A	10.6 sec	B
5) Singley Hill Road at Bear River Drive and the Project Entrance	Stop Sign	11.4 sec	B	12.0 sec	B

${ }^{1}$ Average total delay in seconds/vehicle
${ }^{2}$ Level of service

SECTION 4.0

ENVIRONMENTAL CONSEQUENCES

4.1 Resource Use Patterns

Transportation Networks

A traffic impact analysis was conducted of existing conditions, baseline conditions, and cumulative conditions. Typically, the amount of traffic a project would generate is estimated using empirical data on trip generation published by the Institute of Transportation Engineers (ITE) publication Trip Generation, 7th Edition. This method was used to estimate the traffic generated by the hotel component of the project. However, ITE does not have a standard trip generation rate that would apply to the proposed gaming portion of this project. Therefore, data was collected from multiple existing gaming facilities and also from studies of proposed expansions to gaming facilities. This data was then used to determine an appropriate casino trip generation rate. The studies and documents utilized for establishing the casino trip generation rate were as follows:

1) Shingle Springs Rancheria Hotel-Casino Traffic Study - Trip generation information was reviewed from the "Shingle Springs Interchange DEIR/DEA," completed by David Evans and Associates, Inc. in 2002. The traffic impact study conducted for this EIR was for a proposed 238,500 sq. ft gaming casino with 250 hotel rooms. Trip generation data for this study was determined by collecting peak hour surveys at five California Indian gaming facilities. These five gaming facilities ranged in size from $17,300 \mathrm{sq}$. ft. to 70,000 sq. ft. Using this data, trip generation rates were established for the weekday AM peak hour, weekday PM peak hour, and weekday daily of $2.95,4.95$, and 39.43 trips per 1,000 sq. ft., respectively. Saturday peak hour and Saturday daily trip generation rates were also established to be 6.90 and 59.07 trips per 1,000 sq. feet.
2) Institute of Transportation Engineers (ITE) Journal Article - An article authored by Paul C. Box and William Bunte titled "Gaming Casino Traffic"is contained in the March, 1998 Institute of Transportation Engineers (ITE) Journal. This article summarizes the results of two traffic volume studies conducted at two different gaming casino locations. The article includes the results of the hourly traffic volume variation for inbound and outbound vehicular traffic for the typical weekday, Saturday, and Sunday. From reviewing this document it was determined that during the typical weekday the AM peak hour generates 1.85 percent of the daily traffic volumes and the PM peak hour generates 6.25 percent of the daily traffic volumes.
3) Enterprise Rancheria Casino-Hotel Traffic Impact Study - Trip generation data was reviewed from the "Enterprise Rancheria Casino-Hotel Traffic Impact Study" completed by LSC Transportation Consultants, Inc 2005. This traffic impact study was conducted for a proposed 207,760 sq. ft. gaming casino with 170 hotel rooms. To establish trip generation rates for the gaming portion of this project, seven sources with similar land uses were utilized. The trip generation rates (trips per 1,000 sq. ft.) found from the seven sources were then plotted with the trip rate vs. casino size (sq. ft.) on a graph with a fitted line curve. Using this data trip generation rates were established for the weekday PM peak hour, Saturday PM peak hour, weekday daily, and Saturday daily of $4.37,5.91,43.80$ and 59.13 trips per 1,000 sq. ft., respectively.
4) Cowlitz Indian Tribe Casino Project Traffic Impact Study - Trip generation data was reviewed from the "Cowlitz Indian Tribe Casino Project Traffic Impact Study" completed for the Cowlitz Tribe in January, 2006. This traffic impact study was conducted for a proposed 134,150 sq. ft. gaming casino with 250 hotel rooms and a 5,000 seat event center. To establish trip generation rates for the gaming portion of this project, nine sources with similar land uses were utilized. Particularly, empirical data from the Chinook Winds Casino in Lincoln City, Oregon, the Spirit Mountain Casino in Grande Ronde, Oregon, and the Emerald Queen Casino in Tacoma, Washington were used for trip generation comparison. Using this data, trip generation rates were established for the weekday AM peak hour, weekday PM peak hour, Saturday PM peak hour, weekday daily, and Saturday daily of $2.95,4.95,6.90,61.89$ and 93.24 trips per 1,000 sq. ft., respectively.

Data was also provided from an independent traffic audit at the Mohegan Sun Casino in Connecticut. This casino included a 10,000 -seat event center as well as casino and hotel land uses. The traffic audit provided 24-hour monitoring of traffic entering and leaving the driveways at the site on event and non-event weekdays and weekends. From reviewing this data it was determined that during the non-event weekday the AM peak hour generates 1.1 percent of the daily traffic volumes and the PM peak hour generates 6.2 percent of the daily traffic volumes.
5) Ione Band of Miwok Indians Casino Hotel Traffic Impact Analysis - Trip generation data was reviewed from the "Ione Band of Miwok Indians Casino/Hotel Proposal Traffic Impact Analysis" completed by T.Y. Lin International. This traffic impact study was conducted for a proposed 120,000 sq. ft. gaming casino with 250 hotel rooms. Trip generation rates used for this study were developed by AES through the survey of eight existing casinos. Using the collected survey data, trip generation rates were established for the weekday PM peak hour, Saturday PM peak hour, and the weekday daily of $4.54,6.25$, and 68.24 trips per 1,000 sq. ft., respectively.

It was determined that trip generation rates for the AM and the PM peak hour of 1.98 and 4.95 trips per 1,000 square feet, respectively, were consistent (average) rates used throughout the multiple studies with little variability.

To evaluate the effects of the hotel component of the Proposed Action the peak-hour trip generation was estimated based on information published in Trip Generation (Institute of Transportation Engineers, Seventh Edition, 2003). Based in information contained in the ITE Trip Generation Handbook (Second Edition, June, 2004) and surveys of other casino hotels it was conservatively estimated that approximately 30 percent of the hotel trips would be shared trips by casino patrons and the trips were adjusted accordingly. Table 4 summarizes the estimated a.m. and p.m. peak-hour trip generation of the Proposed Action. The proposed casino expansion and hotel project is estimated to generate a gross total of approximately 55 a.m. peak-hour trips (35 inbound and 21 outbound) and 80 p.m. peak-hour trips (42 inbound and 38 outbound).

TABLE 4
PROJECT TRIP GENERATION ESTIMATES

		AM Peak-Hour Trips			PM Peak-Hour Trips		
Land Use	Size	In	Out	Total	In	Out	Total
Casino	7,300 sq. ft.	10	5	14	19	17	36
Casino Hotel	105 rooms	25	16	41	23	21	43
TOTALS		35	21	55	42	38	80

SOURCE: Institute of Transportation Engineers, Trip Generation, Seventh Edition, 2003.

Trip Distribution

The distribution of project traffic under the Proposed Action was determined based on existing casino travel patterns and the nature of the roadway system serving the proposed project site. It is estimated that approximately 95 percent of the project trips would access the project from the U.S. 101 Fernbridge Drive/Singley Road interchange and about 5 percent are expected to use the U.S. 101 Loleta Drive interchange. The trips generated by the Propsoed Action are shown on Figure 5. It should be noted that we also analyzed a scenario where 35 percent of the trips would use the Loleta Drive interchange. This was conducted to verify that restrictions to turning movements at the main entrance would not be required. Based on the analysis of the different trip distribution assumptions, restricting Singley Hill Road to local traffic only would not be justified by any traffic or safety factors.

Baseline Plus Project Intersection Levels of Service

Traffic generated by the Proposed Action was added to the existing a.m. and p.m. peak-hour volumes based on the distribution percentages described above. Table 5 summarizes the a.m. and p.m. peak-hour level of service at each study intersection under baseline plus project conditions. . The results of this process for the a.m. and p.m. peak hours are illustrated in Figure 6. As seen in this table all project intersections are projected to continue to operate at LOS C or better. Thus with the addition of project traffic to existing volumes, all of the intersections are projected to operate at acceptable levels of service and the project's traffic impacts would be less than significant.

TABLE 5
BASELINE PLUS PROJECT PEAK HOUR INTERSECTION LEVEL OF SERVICE SUMMARY

Intersection	Traffic Control	AM Peak Hour				PM Peak Hour			
		Baseline Conditions		Baseline Plus Project		Baseline Conditions		Baseline Plus Project	
		Average Delay ${ }^{1}$	LOS ${ }^{2}$	Average Delay	LOS	Average Delay	LOS	Average Delay	LOS
1) U.S. 101 Northbound Ramps at Loleta Drive	Stop Sign	9.4 sec	A	9.5 sec	A	9.9 sec	A	9.9 sec	A
2) U.S. 101 Southbound Ramps at Loleta Drive	Stop Sign	10.2 sec	B	10.2 sec	B	10.6 sec	B	10.7 sec	B
3) U.S. 101 Southbound OffRamp at Fernbridge Drive	Stop Sign	10.4 sec	B	10.8 sec	B	10.4 sec	B	11.0 sec	B
4) U.S. 101 NB Ramps at Singley Hill/ Fernbridge Dr	Stop Sign	9.6 sec	A	9.7 sec	A	10.6 sec	B	10.8 sec	B
5) Singley Hill Rd at Bear River Dr \& the Project Entr.	Stop Sign	11.4 sec	B	11.9 sec	B	12.0 sec	B	13.6sec	B

${ }^{1}$ Average total delay in seconds/vehicle
${ }^{2}$ Level of service

The study area roadways currently carry relatively low traffic volumes. For example, the traffic counts conducted near the project site indicate Singley Hill Road carries less than 400 vehicles per hour (vph) in both the a.m. and p.m. peak hours. As noted earlier, the Proposed Action would add about 55 vehicle-trips to these roadways in the a.m. peak hour and 80 vehicle-trips in the p.m. peak hour. The level of service analysis described above indicated only minor increases in intersection delays due to the project-generated traffic.

The added traffic is equivalent to approximately one to two additional vehicles per minute in the peak hours. However, a substantial amount of surplus capacity is available on the study area roads and the additional traffic would consume a small portion of that capacity. Furthermore, there is no reason to expect substantial safety problems in connection with the addition of the
project-generated traffic. Thus the impact of the proposed traffic on study area roadway operations is expected to be less than significant.

Site Access

The proposed site plan is expected to function well and not cause any safety or operational problems. The main issue to be addressed regarding site access involves the improvements that will be required at the intersection of Singley Hill Road with the main entrance to the project. Beyond this intersection (Singley Hill Road at Bear River Drive) it has been suggested that Singley Hill Road north of the casino be restricted to local traffic only to minimize the amount of traffic passing by existing residences in that area. To address this issue there is a sign indicating that no right-turns are allowed. However, additional improvement maybe needed to clearly indicate that traffic exiting from the Bear River Casino must turn left onto Singley Hill Road. Based on our review of the roadways in the area closing this roadway would not be required from a traffic safety or operations standpoint and from a local traffic planning standpoint this roadway should clearly remain open to the public. Since this area has no other roadways or parallel routes on this side of the freeway it is our understanding that various public agencies may ultimately oppose the closing of this road to the public.

It is recommended that this road remain open to the public and improvements such as medians should be constructed in the vicinity of the intersection to direct traffic towards the freeway. The medians would effectively discourage casino patrons from turning right when leaving the casino. This should help minimize the amount of casino traffic traveling past the other residences without actually closing this important part of the local roadway network to the public. Because the volume of traffic that travels beyond the casino on Singley Hill Road is so low there would be no safety or operational problems expected with various non-standard configurations. However, depending on the final design the County may need to consider having a stop sign placed on the southbound Singley Hill Road approach to this intersection to indicate that vehicles have the right-of-way when coming up the hill.

Pedestrian and Bicycle Impacts

Since the project would not generate a substantial increase in bicycling activity and, further, is not expected to impact the existing or planned bicycle system in the vicinity of the project site adversely, no significant impacts are anticipated.

The project is not expected to generate a large number of new pedestrian trips along Singley Hill Road or the other public roads in the area. Moreover, it is not expected to adversely impact the existing or future pedestrian system in the vicinity of the project site. Thus no significant pedestrian system impacts are projected as a result of the Proposed Action.

TRANSIT IMPACTS

Implementation of the project is not anticipated to generate any substantial amount of additional transit riders, given the limited transit service in the vicinity of the site. Thus no adverse transit impacts are anticipated.

Freeway Impacts

Based on our analysis there would not be any freeway improvements required by the project on the mainline or at any of the ramp intersections that were studied. Due to the limited amount of traffic the project would add to an one freeway segment in the area, further analysis was not required.

Cumulative Conditions

Cumulative traffic forecasts for this study were based on information obtained from the Humboldt County General Plan. A growth rate of one half a percent per year was used for this area. This increase is generally consistent with the growth and land use changes that are expected in the County's General Plan. With these changes there would be no significant impacts and the estimated cumulative intersection LOS would be as shown in Table 6.

Cumulative Plus Project Conditions

The estimated a.m. and p.m. peak-hour trips under the Proposed Action were added to the cumulative condition volumes described above. This resulted in the estimated traffic volumes on the study area roadway system under cumulative plus project conditions. With the addition of traffic from the Proposed Action there would be no significant impacts results of this process for the a.m. and p.m. peak hours are illustrated in Figure 7.

The level of service at the study intersections was tested using the estimated a.m. and p.m. peakhour traffic volumes for cumulative plus project conditions. Table $\mathbf{6}$ summarizes the results of that process.

TABLE 6
PEAK HOUR INTERSECTION LEVEL OF SERVICE SUMMARY CUMULATIVE PLUS PROJECT

Intersection	Traffic Control	AM Peak Hour				PM Peak Hour			
		Cumulative No Project		Cumulative Plus Project		Cumulative No Project		Cumulative Plus Project	
		Average Delay ${ }^{1}$	LOS 2	Average Delay	LOS	Average Delay	LOS	Average Delay	LOS
1) U.S. 101 Northbound Ramps at Loleta Drive	Stop Sign	9.6 sec	A	9.6 sec	A	10.1 sec	B	10.1 sec	B
2) U.S. 101 Southbound Ramps at Loleta Drive	Stop Sign	10.5 sec	B	10.5 sec	B	11.0 sec	B	11.0 sec	B
3) U.S. 101 Southbound OffRamp at Fernbridge Drive	Stop Sign	10.8 sec	B	11.3 sec	B	10.8 sec	B	11.5 sec	B
4) U.S. 101 NB Ramps at Singley Hill/ Fernbridge Dr	Stop Sign	9.8 sec	A	9.9 sec	A	10.9 sec	B	11.2 sec	B
5) Singley Hill Rd at Bear River Dr \& the Project Entr.	Stop Sign	12.0 sec	B	12.7 sec	B	12.9 sec	B	15.1 sec	C

${ }^{1}$ Average total delay in seconds/ vehicle
${ }^{2}$ Level of service
SOURCE: Abrams Associates, 2009

The project is not expected to result in a substantial increase in bicycling activity or to adversely impact the existing or planned bicycle system in the vicinity of the project site under cumulative plus project conditions. Thus no significant adverse impacts on conditions for bicycles are projected.

The project would not adversely impact the existing or planned pedestrian system in the vicinity of the project site under cumulative plus Proposed Action conditions. No significant adverse impacts on pedestrians are, therefore, anticipated in connection with the Proposed Action.

Implementation of the Proposed Action is not expected to generate additional transit riders under cumulative plus project conditions. Therefore, no adverse transit impacts are anticipated.

SECTION 5.0

MITIGATION MEASURES

5.1 RESOURCE USE PATTERNS

Transportation Networks

Under both existing and cumulative traffic conditions, the addition of traffic from the Proposed Action is not forecast to degrade any intersection beyond LOS C. Therefore, all intersections would continue to operate well within the County's LOS standard (LOS C) and no off-site traffic mitigations would be required.

Although the project would increase the traffic on Singley Hill Road the added traffic would be equivalent to an average of no more than approximately two additional vehicles per minute in the peak hours. However, a substantial amount of surplus capacity is available on the study area roads, and the additional traffic would consume only a small portion of that capacity. Further, there is no reason to expect substantial safety problems in connection with the addition of the project-generated traffic. Thus the impact of the proposed traffic on study area roadway operations is expected to be less than significant and no traffic mitigation measures would be required.

APPENDIX

BEAR RIVER CASINO EXPANSION in Humboldt County

Prepared for:
Analytical Environmental Services
I801 7th Street, Suite 100
Sacramento, CA 95814
Attn: Jennifer Bowden
Prepared by:
Abrams Associates
1660 Olympic Boulevard, Suite 210
Walnut Creek, CA 94596
Tel: 925.945.020।

	\dagger		\uparrow	p	\checkmark	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		$\hat{\beta}$			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	184	24	9	94	50	18	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	200	26	10	102	54	20	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	189	61			112		
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	189	61			112		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	74	97			96		
cM capacity (veh/h)	770	1004			1478		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	226	112	74				
Volume Left	200	0	54				
Volume Right	26	102	0				
cSH	792	1700	1478				
Volume to Capacity	0.29	0.07	0.04				
Queue Length (ft)	29	0	3				
Control Delay (s)	11.4	0.0	5.6				
Lane LOS	B		A				
Approach Delay (s)	11.4	0.0	5.6				
Approach LOS	B						
Intersection Summary							
Average Delay			7.2				
Intersection Capacity Utilization			28.7\%		ICU Leve	of Service	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

	4							\dagger	7	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$		「					F			\uparrow	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	131	0	32	0	0	0	0	32	16	18	71	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	142	0	35	0	0	0	0	35	17	20	77	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								239			214	
pX, platoon unblocked												
vC , conflicting volume	160	168	77	195	160	43	77			52		
$\mathrm{vC1}$, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	160	168	77	195	160	43	77			52		
tC , single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	82	100	96	100	100	100	100			99		
cM capacity (veh/h)	798	715	984	731	723	1027	1521			1554		
Direction, Lane \#	EB 1	EB 2	NB 1	SB 1								
Volume Total	142	35	52	97								
Volume Left	142	0	0	20								
Volume Right	0	35	17	0								
cSH	798	984	1700	1554								
Volume to Capacity	0.18	0.04	0.03	0.01								
Queue Length (ft)	16	3	0	1								
Control Delay (s)	10.5	8.8	0.0	1.6								
Lane LOS	B	A		A								
Approach Delay (s)	10.2		0.0	1.6								
Approach LOS	B											
Intersection Summary												
Average Delay			6.0									
Intersection Capacity Utilization			25.3\%	ICU Level of Service					A			
Analysis Period (min)			15									

	\dagger		\uparrow	p	\checkmark	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		$\hat{\beta}$			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	109	105	11	113	115	16	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	118	114	12	123	125	17	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	341	73			135		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	341	73			135		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	80	88			91		
cM capacity (veh/h)	599	988			1450		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	233	135	142				
Volume Left	118	0	125				
Volume Right	114	123	0				
cSH	742	1700	1450				
Volume to Capacity	0.31	0.08	0.09				
Queue Length (ft)	34	0	7				
Control Delay (s)	12.0	0.0	6.9				
Lane LOS	B		A				
Approach Delay (s)	12.0	0.0	6.9				
Approach LOS	B						
Intersection Summary							
Average Delay			7.4				
Intersection Capacity Utilization			37.2\%		ICU Leve	of Service	A
Analysis Period (min)			15				

	\rangle							\dagger	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		「					$\hat{\beta}$			\uparrow	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	115	0	17	0	0	0	0	65	11	9	93	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	125	0	18	0	0	0	0	71	12	10	101	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								239			214	
pX, platoon unblocked												
vC, conflicting volume	197	203	101	216	197	77	101			83		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	197	203	101	216	197	77	101			83		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	84	100	98	100	100	100	100			99		
cM capacity (veh/h)	758	689	954	723	694	984	1491			1515		
Direction, Lane \#	EB 1	EB 2	NB 1	SB 1								
Volume Total	125	18	83	111								
Volume Left	125	0	0	10								
Volume Right	0	18	12	0								
cSH	758	954	1700	1515								
Volume to Capacity	0.16	0.02	0.05	0.01								
Queue Length (ft)	15	1	0	0								
Control Delay (s)	10.7	8.8	0.0	0.7								
Lane LOS	B	A		A								
Approach Delay (s)	10.4		0.0	0.7								
Approach LOS	B	B										
Intersection Summary												
Average Delay			4.7									
Intersection Capacity U	ization		25.1\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

	\dagger		\uparrow	p	\checkmark	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		$\hat{\beta}$			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	184	24	9	94	50	18	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	200	26	10	102	54	20	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC , conflicting volume	189	61			112		
vC 1 , stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	189	61			112		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	74	97			96		
cM capacity (veh/h)	770	1004			1478		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	226	112	74				
Volume Left	200	0	54				
Volume Right	26	102	0				
cSH	792	1700	1478				
Volume to Capacity	0.29	0.07	0.04				
Queue Length (ft)	29	0	3				
Control Delay (s)	11.4	0.0	5.6				
Lane LOS	B		A				
Approach Delay (s)	11.4	0.0	5.6				
Approach LOS	B						
Intersection Summary							
Average Delay			7.2				
Intersection Capacity Utilization			28.7\%		ICU Leve	of Service	A
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis

	\rangle							\dagger	$>$		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		「					$\hat{\beta}$			\uparrow	
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	149	0	32	0	0	0	0	32	16	18	80	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	162	0	35	0	0	0	0	35	17	20	87	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								239			214	
pX, platoon unblocked												
vC, conflicting volume	170	178	87	204	170	43	87			52		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	170	178	87	204	170	43	87			52		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	79	100	96	100	100	100	100			99		
cM capacity (veh/h)	786	706	972	720	714	1027	1509			1554		
Direction, Lane \#	EB 1	EB 2	NB 1	SB 1								
Volume Total	162	35	52	107								
Volume Left	162	0	0	20								
Volume Right	0	35	17	0								
cSH	786	972	1700	1554								
Volume to Capacity	0.21	0.04	0.03	0.01								
Queue Length (ft)	19	3	0	1								
Control Delay (s)	10.8	8.8	0.0	1.4								
Lane LOS	B	A		A								
Approach Delay (s)	10.4		0.0	1.4								
Approach LOS	B	B										
Intersection Summary												
Average Delay			6.2									
Intersection Capacity U	ization		26.8\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

	\rangle						4	4			\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\uparrow	「		\uparrow	「			
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	50	66	0	0	17	52	55	0	2	0	0	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	54	72	0	0	18	57	60	0	2	0	0	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		341			1303							
pX, platoon unblocked												
vC, conflicting volume	18			72			199	199	72	199	199	18
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	18			72			199	199	72	199	199	18
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	97			100			92	100	100	100	100	100
cM capacity (veh/h)	1598			1528			740	673	991	738	673	1060
Direction, Lane \#	EB 1	WB 1	WB 2	NB 1	NB 2							
Volume Total	126	18	57	60	2							
Volume Left	54	0	0	60	0							
Volume Right	0	0	57	0	2							
cSH	1598	1700	1700	740	991							
Volume to Capacity	0.03	0.01	0.03	0.08	0.00							
Queue Length (ft)	3	0	0	7	0							
Control Delay (s)	3.3	0.0	0.0	10.3	8.6							
Lane LOS	A			B	A							
Approach Delay (s)	3.3	0.0		10.2								
Approach LOS				B								
Intersection Summary												
Average Delay			4.0									
Intersection Capacity U	lization		22.9\%	ICU Level of Service					A			
Analysis Period (min)			15									

3: US 101 SB Off-Ramp \& US 101 NB Ramps Background + Project AM Peak Hour Volumes HCM Unsignalized Intersection Capacity Analysis

	\rangle						4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	4			\uparrow	「				${ }^{7}$		F
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	55	18	0	0	115	84	0	0	0	30	0	56
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	60	20	0	0	125	91	0	0	0	33	0	61
Pedestrians												
Lane Width (ft)												
Walking Speed (fts)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		756			654							
pX, platoon unblocked												
vC, conflicting volume	216			20			325	355	20	264	264	125
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	216			20			325	355	20	264	264	125
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			100			100	100	100	95	100	93
cM capacity (veh/h)	1353			1597			567	545	1058	665	613	926
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2						
Volume Total	60	20	125	91	33	61						
Volume Left	60	0	0	0	33	0						
Volume Right	0	0	0	91	0	61						
cSH	1353	1700	1700	1700	665	926						
Volume to Capacity	0.04	0.01	0.07	0.05	0.05	0.07						
Queue Length (ft)	3	0	0	0	4	5						
Control Delay (s)	7.8	0.0	0.0	0.0	10.7	9.2						
Lane LOS	A				B	A						
Approach Delay (s)	5.9		0.0		9.7							
Approach LOS					A							
Intersection Summary												
Average Delay			3.5									
Intersection Capacity Utilization			19.7\%	ICU Level of Service					A			
Analysis Period (min)			15									

5: Bear River Drive \& Singley Hill Road

	\dagger		\dagger			\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		\uparrow			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	204	25	9	128	51	18	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	222	27	10	139	55	20	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX , platoon unblocked							
VC , conflicting volume	210	79			149		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	210	79			149		
tC, single (s)	6.4	6.2			4.1		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	70	97			96		
cM capacity (veh/h)	748	981			1433		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	249	149	75				
Volume Left	222	0	55				
Volume Right	27	139	0				
cSH	768	1700	1433				
Volume to Capacity	0.32	0.09	0.04				
Queue Length (ft)	35	0	3				
Control Delay (s)	11.9	0.0	5.7				
Lane LOS	B		A				
Approach Delay (s)	11.9	0.0	5.7				
Approach LOS	B						
Intersection Summary							
Average Delay			7.2				
Intersection Capacity Utilization			35.0\%	ICU Level of Service			A
Analysis Period (min)			15				

3: US 101 SB Off-Ramp \& US 101 NB Ramps Background + Project PM Peak Hour Volumes HCM Unsignalized Intersection Capacity Analysis

	\rangle						4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$		「					\hat{F}		\uparrow		
Sign Control	Stop			Stop			Free			Free		
Grade		0\%		0\%			0\%			0\%		
Volume (veh/h)	179	0	32	0	0	0	0	32	16	28	80	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
$\begin{array}{llllllllll}\text { Hourly flow rate (vph) } & 195 & 0 & 35 & 0 & 0 & 0 & 0 & 35 & 17 \\ \text { Pedestrians }\end{array}$												
Pedestrians												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								239			214	
pX , platoon unblocked												
vC, conflicting volume	191	200	87	226	191	43	87			52		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	191	200	87	226	191	43	87			52		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	74	100	96	100	100	100	100			98		
cM capacity (veh/h)	757	682	972	693	690	1027	1509			1554		
Direction, Lane \#	EB 1	EB 2	NB 1	SB 1								
Volume Total	195	35	52	117								
Volume Left	195	0	0	30								
Volume Right	0	35	17	0								
cSH	757	972	1700	1554								
Volume to Capacity	0.26	0.04	0.03	0.02								
Queue Length (ft)	26	3	0	1								
Control Delay (s)	11.4	8.8	0.0	2.0								
Lane LOS	B	A		A								
Approach Delay (s)	11.0		0.0	2.0								
Approach LOS B												
Intersection Summary												
Average Delay			6.9									
Intersection Capacity U	ization		29.0\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

5: Bear River Drive \& Singley Hill Road

	\dagger		\uparrow	p	\checkmark	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		$\hat{\beta}$			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	146	106	11	153	117	16	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	159	115	12	166	127	17	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	367	95			178		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	367	95			178		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	72	88			91		
cM capacity (veh/h)	575	962			1398		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	274	178	145				
Volume Left	159	0	127				
Volume Right	115	166	0				
cSH	692	1700	1398				
Volume to Capacity	0.40	0.10	0.09				
Queue Length (ft)	47	0	7				
Control Delay (s)	13.6	0.0	7.0				
Lane LOS	B		A				
Approach Delay (s)	13.6	0.0	7.0				
Approach LOS	B						
Intersection Summary							
Average Delay			7.9				
Intersection Capacity Utilization			41.9\%		ICU Leve	of Service	A
Analysis Period (min)			15				

	4						4	\dagger	p		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow	$\stackrel{7}{ }$				\%		F
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Volume (veh/h)	51	20	0	0	128	66	0	0	0	28	0	46
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	55	22	0	0	139	72	0	0	0	30	0	50
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)		756			654							
pX, platoon unblocked												
vC , conflicting volume	211			22			322	343	22	272	272	139
vC1, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	211			22			322	343	22	272	272	139
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	96			100			100	100	100	95	100	94
cM capacity (veh/h)	1360			1594			578	555	1055	660	609	909
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2						
Volume Total	55	22	139	72	30	50						
Volume Left	55	0	0	0	30	0						
Volume Right	0	0	0	72	0	50						
cSH	1360	1700	1700	1700	660	909						
Volume to Capacity	0.04	0.01	0.08	0.04	0.05	0.06						
Queue Length (ft)	3	0	0	0	4	4						
Control Delay (s)	7.8	0.0	0.0	0.0	10.7	9.2						
Lane LOS	A				B	A						
Approach Delay (s)	5.6		0.0		9.8							
Approach LOS					A							
Intersection Summary												
Average Delay			3.3									
Intersection Capacity Utilization			23.4\%	ICU Level of Service					A			
Analysis Period (min)			15									

3: US 101 SB Off-Ramp \& US 101 NB Ramps Cumulative + Project AM Peak Hour Volumes HCM Unsignalized Intersection Capacity Analysis

5: Bear River Drive \& Singley Hill Road

	7			7		\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		$\hat{\beta}$			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	227	28	10	142	57	20	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	247	30	11	154	62	22	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	234	88			165		
$\mathrm{vC1}$, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu , unblocked vol	234	88			165		
tC , single (s)	6.4	6.2			4.1		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	66	97			96		
cM capacity (veh/h)	721	970			1413		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	277	165	84				
Volume Left	247	0	62				
Volume Right	30	154	0				
cSH	742	1700	1413				
Volume to Capacity	0.37	0.10	0.04				
Queue Length (ft)	43	0	3				
Control Delay (s)	12.7	0.0	5.8				
Lane LOS	B		A				
Approach Delay (s)	12.7	0.0	5.8				
Approach LOS B							
Intersection Summary							
Average Delay			7.6				
Intersection Capacity Utilization			37.8\%		ICU Leve	of Service	A
Analysis Period (min)			15				

3: US 101 SB Off-Ramp \& US 101 NB Ramps Cumulative + Project PM Peak Hour Volumes HCM Unsignalized Intersection Capacity Analysis

	\rangle						4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$		「					\hat{F}		\uparrow		
Sign Control	Stop			Stop			Free			Free		
Grade		0\%		0\%			0\%			0\%		
Volume (veh/h)	199	0	36	0	0	0	0	36	18	31	89	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	216	0	39	0	0	0	0	39	20	34	97	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)								239			214	
pX , platoon unblocked												
vC, conflicting volume	213	223	97	252	213	49	97			59		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	213	223	97	252	213	49	97			59		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	70	100	96	100	100	100	100			98		
cM capacity (veh/h)	731	661	960	661	670	1020	1497			1545		
Direction, Lane \#	EB 1	EB 2	NB 1	SB 1								
Volume Total	216	39	59	130								
Volume Left	216	0	0	34								
Volume Right	0	39	20	0								
cSH	731	960	1700	1545								
Volume to Capacity	0.30	0.04	0.03	0.02								
Queue Length (ft)	31	3	0	2								
Control Delay (s)	12.0	8.9	0.0	2.0								
Lane LOS	B	A		A								
Approach Delay (s)	11.5		0.0	2.0								
Approach LOS B												
Intersection Summary												
Average Delay			7.2									
Intersection Capacity U	ization		30.8\%		CU Lev	of Se	vice		A			
Analysis Period (min)			15									

5: Bear River Drive \& Singley Hill Road

	\dagger		\uparrow	p	\checkmark	\downarrow	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	M		\uparrow			\uparrow	
Sign Control	Stop		Free			Free	
Grade	0\%		0\%			0\%	
Volume (veh/h)	162	118	12	170	130	18	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	176	128	13	185	141	20	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX , platoon unblocked							
vC , conflicting volume	408	105			198		
$\mathrm{vC1}$, stage 1 conf vol							
$\mathrm{vC2}$, stage 2 conf vol							
vCu , unblocked vol	408	105			198		
tC, single (s)	6.4	6.2			4.1		
$\mathrm{tC}, 2$ stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free \%	67	86			90		
cM capacity (veh/h)	538	949			1375		
Direction, Lane \#	WB 1	NB 1	SB 1				
Volume Total	304	198	161				
Volume Left	176	0	141				
Volume Right	128	185	0				
cSH	658	1700	1375				
Volume to Capacity	0.46	0.12	0.10				
Queue Length (ft)	61	0	9				
Control Delay (s)	15.1	0.0	7.1				
Lane LOS	C		A				
Approach Delay (s)	15.1	0.0	7.1				
Approach LOS	C						
Intersection Summary							
Average Delay			8.6				
Intersection Capacity Utilization			45.5\%		ICU Leve	of Service	A
Analysis Period (min)			15				

[^0]: ${ }^{1}$ Guide for the Preparation of Traffic Impact Studies, Caltrans, Sacramento, CA, 2001.

